

DURABIO

21 Januari 2020

DURABIO[™] a transparent bio-based engineering polymer developed by Mitsubishi Chemical. DURABIO[™] its transparency similar to that of PMMA but with a much better impact behavior and an improved heat resistance. DURABIO[™] beats the well-known inferior properties of PC in regards to scratch resistance, hardness and chemical resistance. That is why DURABIO[™] closes the gap between PC and PMMA.

Print Properties			
Description	Typical value		
Nozzle Size	0.4mm		
Bed Adhesion	Dimafix *		
Nozzle Temperature	240±10°C		
Bed Temperature	≥100°C		
Layer Height	0.2mm		
Print Speed	50 mm/s		
Fan Speed	50%		
Extrusion Multiplier / Material Flow	100%		
Retraction Distance	5.5mm		
Retraction Speed	35 mm/s		
Difficulty to Print	easy		
Drying Required	min. 5 hours suggested		

* Dimafix is used with a glass buildplate.

ADDITIONAL INFO

DURABIO[™] is particularly designed for applications requiring exceptional visual appearance with scratch and impact resistance as well as chemical inertness.

For information about Durabio[™] filament you can contact:

Boloberry Technologies

Carrer Muntaner,501 08022 Barcelona SPAIN +34 932 115 844 www.boloberry.com Europe@mcpp-3dp.com

Mechanical Specifications

During additional research a print profile has been made which was optimized for achieving a highest possible tensile performance. Table 1 shows the typical values of an injection moulded specimen compared to a 3D-printed specimen in both the X-Y axis (3D-printed horizontally) and the Z-axis (3D-printed vertically). After that, some important parameters are given and the corresponding trend is briefly described.

Table 1: Tensile data of both injection moulded and 3D-printed specimens.*			
	Injection Moulded	3D-Printed X-Y	3D-Printed Z
Young's Modulus [MPa]	2267	2283	2380
Stress at Yield [MPa]	64	69	55
Stress at Break [MPa]	53	56	56
Strain at Yield [%]	6	6	4
Strain at Break [%]	75	11	5

Most important parameters:

When increasing the Nozzle Temperature the Stress at Yield will increase An increase of up to 106% could be achieved in the vertical print orientation (Z-axis) compared to a visually optimized profile

When decreasing the Fan Speed the Stress at Yield will increase An increase of up to 154% could be achieved in the vertical print orientation (Z-axis) compared to a visually optimized profile

When increasing the Material Flow the Stress at Yield will increase An increase of up to 40% could be achieved in the vertical print orientation (Z-axis) compared to a visually optimized profile

Print Conditions

All specimens have been printed using a 0.4mm nozzle and the layer height was set to 0.2mm. The room in which the 3D-printer was located had an environmental temperature of \pm 25°C.

*Test Conditions

The tensile tests have been carried out according to ISO-527 using modified 1BA specimens (3D-printing) and 1A specimens (injection moulding). The room in which the Universal Testing Machine was located had an environmental temperature of $\pm 20^{\circ}$ C.

MCPP Netherlands B.V. cannot be held responsible for any inaccuracies. No guarantees can be given since differences in data could be caused by differences between individual 3D-printers.

BOLOBERRY TECHNOLOGIES - Carrer Muntaner, 501 - 08022 - BARCELONA - SPAIN - www.boloberry.com - Phone:+34 93 211 58 44 - Mail: tienda@boloberry.com