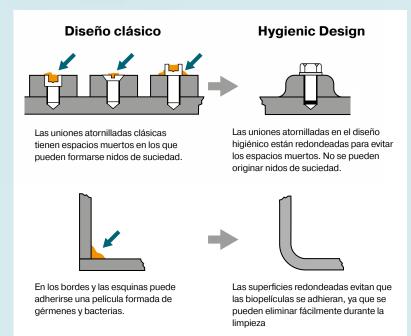


HLAE - HYGIENIC DESIGN

REDUCTORES PLANETARIOS


El único reductor planetario con diseño higiénico certificado, ideal para procesos seguros e higiénicos en las industrias farmacéutica, alimentaria y de bebidas.

Hygienic Design

El requisito más importante para las máquinas y los componentes de las industrias farmacéutica y alimentaria es no dejar espacio alguno a los contaminantes. En los bordes, las esquinas y en cualquier mínimo espacio pueden formarse nidos de suciedad o biopelículas compuestas de gérmenes y bacterias. El diseño higiénico del reductor HLAE no tiene espacios muertos. Las esquinas y los bordes han sido redondeados de forma adicional para evitar las adherencias. La superficie de acero inoxidable electropulido y las juntas especiales permiten una limpieza regular, incluso aplicando productos de limpieza agresivos.

La suciedad no tiene ninguna posibilidad en el HLAE Y un aspecto único: es el primer reductor planetario del mundo con diseño higiénico certificado; flexible sin tornillo radial, potente y a la vez fácil y rápido de limpiar.

Industria alimentaria

Funcionalidad perfecta y limpieza sin residuos en su sistema de alimentos o bebidas, sin importar si está procesando, dosificando, cortando, colocando o embalando.

La serie HLAE sirve de impulso a sus procesos y puede limpiarse y desinfectarse rápidamente una vez realizado el trabajo.

Aplicaciones típicas:

- Sistemas de llenado y dosificadores
- Loncheadoras
- Conformadoras y llenadoras
- Transportadores mecánicos
- Mezcladores y agitadores

... y todas las aplicaciones en las que se utiliza el proceso Cleaning-in-Place (CIP).

Las más altas exigencias en cuanto a la rugosidad de la superficie combinadas con la tecnología más fiable: esto es lo que representa la serie HLAE fabricada con acero higiénico.

El producto se puede utilizar con toda confianza para racionar, dosificar, prensar o centrifugar en el ámbito de las industrias farmacéutica y cosmética. Esto se debe a que incluso el polvo más fino apenas es capaz de adherirse a la superficie electropulida que tiene un valor de rugosidad media R_a de < 0,8 μ m.

Aplicaciones típicas:

- Máquinas agitadoras / mezcladores cónicos
- Sistemas de llenado de cápsulas
- Centrifugadoras

La importancia está en cada detalle...

Eje de salida

Eje de salida con chaveta o eje de salida liso.

Junta de ejes de rotación sin espacio muerto

Retén radial de eje de PTFE: certificado según la FDA

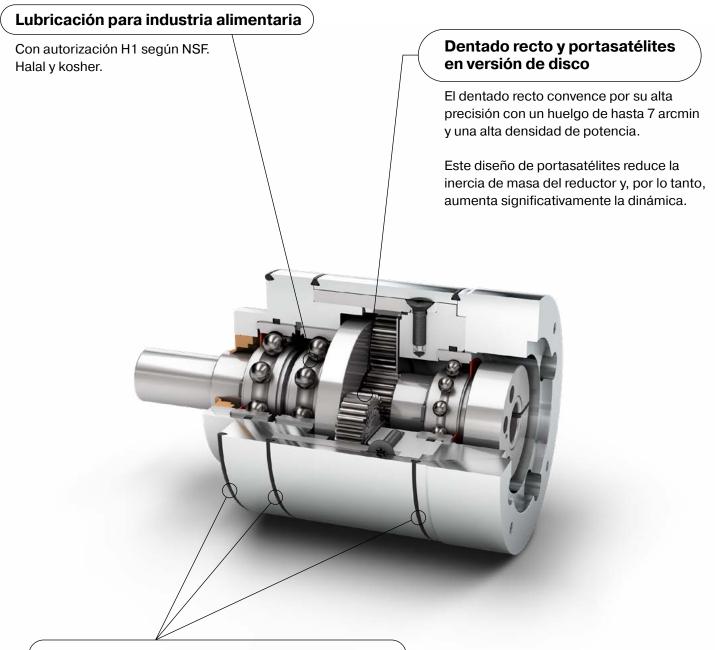
Collar de centrado largo

Así, el centrado puede realizarse de forma fácil e higiénica para diferentes grosores de pared.

Superficie electropulida

La carcasa exterior del HLAE está hecha de acero inoxidable 1.4404 de la más alta calidad, cuya superficie ha sido electropulida. Esto aporta una superficie especialmente lisa (valor de rugosidad media Ra de $< 0.8 \ \mu m$) y reduce la adherencia de la suciedad mejorando a la vez la facilidad de limpieza del reductor.

Clase de protección IP69K


Máxima clase de protección para una limpieza sin restricciones según el proceso CIP.

Sin tornillos radiales

En los reductores convencionales, existe un orificio en el adaptador del motor a través del cual se aprieta el sistema de fijación y se fija el eje del motor en el accionamiento del reductor.

El HLAE no necesita este orificio en su estructura. La superficie se mantiene absolutamente redondeada, incluso en la zona del adaptador del motor, para que ninguna biopelícula sea capaz de adherirse.

... y en el interior también

Juntas tóricas según la autorización de la FDA

EPDM (estándar)

Rango de temperatura de -50°C a +140°C

El área típica de aplicación es exactamente donde se requiere una alta resistencia al agua caliente y al vapor de las juntas utilizadas. El EPDM también posee una excelente resistencia al envejecimiento y al ozono. Excelente resistencia química a los agentes oxidantes.

FFKM (opcional)

Rango de temperatura de -15°C a +325°C

Las juntas de FFKM aumentan el rango de temperatura y tienen una excelente resistencia química. El FFKM se utiliza en áreas donde otros materiales elastómeros han alcanzado sus límites.

Se puede elegir entre dos opciones de montaje en el lado del motor:

Brida del motor B5

El motor se monta directamente al reductor a través de orificios pasantes en la brida del motor. En el lado del reductor puede elegirse entre un gran número de adaptadores de motor, lo que permite una adaptación higiénica y sencilla a diferentes motores.

Brida del motor B14

Un adaptador adicional, que está atornillado al motor, establece la conexión higiénica con el reductor.

Configure su combinación adecuada de motor-reductor con solo unos pocos clics mediante nuestro Tec Data Finder (TDF) en: www.neugart.com

Kit de sellado opcional

Para garantizar un diseño higiénico uniforme en el lado de aplicación, se dispone opcionalmente del kit de sellado del HLAE.

El kit de sellado de libre posicionamiento del HLAE es ideal universalmente para diferentes espesores de pared y ofrece así la máxima protección higiénica.

El kit de sellado garantiza, gracias a las juntas utilizadas, la ausencia de espacios muertos. Los materiales son, al igual que el reductor planetario HLAE, de acero inoxidable y pueden limpiarse perfectamente.

Esto le permite la máxima flexibilidad en la conexión con la aplicación a la vez que cumple con los más altos requisitos higiénicos.

Kit de sellado (lado de salida)							
Para serie de reductores	HLAE070	HLAE090	HLAE110				
Número de artículo	63911	63858	64130				

Certificaciones

3-A RPSCQC

El HLAE es el primer reductor planetario del mundo con diseño higiénico, que ha sido certificado según la norma 3-A RPSCQC.

Lubricante NSF H1

En el interior del HLAE también se tiene en cuenta el uso de materiales certificados. El lubricante utilizado está certificado según la norma NSF H1, que garantiza que el producto puede utilizarse en la industria alimentaria sin ningún riesgo para la salud. Además, el lubricante también cuenta con la aprobación halal y kosher.

FDA

Los materiales de los componentes utilizados en el HLAE, como el retén radial de eje y las juntas tóricas, están certificados según la FDA.

IP69K

Los productos de las máquinas procesadoras de alimentos están sometidos a las condiciones ambientales más duras. El HLAE está diseñado de modo que cumple con el grado de protección más alto posible, el IP69K, y por tanto es apropiado para la limpieza Cleaning-in-Place (CIP).

Datos técnicos

Code	Valores característicos del reductor			HLAE070	HLAE090	HLAE110	p ⁽¹⁾
	Vida útil (L _{10h})	t _L	h		30.000		
	Eficiencia bajo plena carga ⁽²⁾	n	%		98		1
	Eliciencia bajo pieria carga.	η	70		97		2
	Temperatura de servicio mín.	T _{min}	·C		-25		
	Temperatura de servicio máx.	T _{max}			90		
	Grado de protección				IP69K		
F	Lubricación para industria alimentaria			Gras	sa (lubricación permane	ente)	
	Posición de montaje				cualquiera		
s			arcmin	< 10	< 7	< 7	1
	Holgura interna estándar	Jt	alcilliii	< 12	< 9	< 9	2
	Rigidez a la torsión ⁽²⁾		Nm/	2,3 - 3,1	6,6 - 8,7	14,7 - 19,5	1
	nigidez a la torsion	Cg	arcmin	2,2 - 3,2	6,6 - 9,0	13,5 - 20,5	2
	Peso del reductor (2)		lea	2,1	3,8	7,3 - 7,4	1
	Peso del reductor 47	m _G	kg	2,4 - 2,5	4,3 - 4,5	8,7 - 9,0	2
S	Superficie estándar			Carcasa: Acero inoxidable 1.4404 – electropulido (R _a < 0,8 μm)		pulido ($R_a < 0.8 \mu m$)	
	Ruido de funcionamiento ⁽³⁾	Q_g	dB(A)	58	60	65	
	Par de flexión máximo referido a la brida de entrada del reductor ⁽⁴⁾	M _b	Nm	8	16	40	

Carga sobre el eje de salida			HLAE070	HLAE090	HLAE110	p ⁽¹⁾
Fuerza radial para 20.000 h ⁽⁵⁾⁽⁶⁾	F _{r20.000 h}		450	900	1450	
Fuerza axial para 20.000 h ⁽⁵⁾⁽⁶⁾	F _{a 20.000 h}		550	1500	2500	
Fuerza radial para 30.000 h ⁽⁵⁾⁽⁶⁾	F _{r30.000 h}	N	400	600	1250	1
Fuerza axial para 30.000 h ⁽⁵⁾⁽⁶⁾	F _{a 30.000 h}	IN	500	1000	2000	Ī
Fuerza radial máxima ⁽⁶⁾⁽⁷⁾	F _{r Stat}		1000	1250	5000	7
Fuerza axial máxima ⁽⁶⁾⁽⁷⁾	F _{a Stat}		1200	1600	3800	
Par de vuelco para 20.000 h ⁽⁵⁾⁽⁷⁾	M _{K20.000 h}	Nm	22	49	109	1
Par de vuelco para 30.000 h ⁽⁵⁾⁽⁷⁾	M _{K 30.000 h}	INIII	19	33	94	

Momento de inercia			HLAE070	HLAE090	HLAE110	p ⁽¹⁾
Mamanta da inavaia(2)		Irann2	0,065 - 0,135	0,753 - 0,866	1,579 - 2,630	1
Momento de inercia ⁽²⁾	J	kgcm ²	0,064 - 0,131	0,740 - 0,983	1,569 - 2,620	2

⁽¹⁾ Número de etapas

Los valores dependientes de la relación de transmisión se pueden consultar en el Tec Data Finder – www.neugart.com

 $^{^{(3)}}$ Nivel de ruido a una distancia de 1 m; medido para una velocidad de entrada $n_1 = 3000 \text{ min}^{-1} \sin \text{ carga}; i=5$

 $^{^{(4)}~}$ Peso máx. del motor* en kg = 0.2 x M $_{\rm b}$ / Long. motor, en m * para una distribución simétrica del peso del motor

^{*} para una posición de montaje horizontal y estacionaria

 $^{^{(5)}}$ Estos valores están referidos a una velocidad del eje de salida ${\rm n_2}{=}100~{\rm min^{-1}}$

⁽⁶⁾ Referido al centro del eje de salida

⁽⁷⁾ Valores diferentes (algunos superiores) al modificar T₂₈₀, F_r, F_a, así como el ciclo y la vida útil del rodamiento. Dimensionado específico para cada aplicación con NCP – www.neugart.com

Datos técnicos

Pares de salida			HLAE070	HLAE090	HLAE110	i ⁽¹⁾	p ⁽²⁾
			28	85	115	3	
			33	87	155	4]
			30	82	171	5] ,
			25	65	135	7	1
			18	50	120	8	1
			15	38	95	10	1
Par de salida nominal ⁽³⁾⁽⁴⁾			33	87	157	9	
	_	Nina	33	80	171	12	1
	T _{2N}	Nm	33	82	171	15	1
			33	87	171	16	1
			33	87	171	20	1
			30	82	171	25	2
			33	87	171	32	1
			30	82	171	40	
			18	50	120	64	
			15	38	95	100	1
			45	136	184	3	;
			53	140	248	4	1
			48	131	274	5	1.
			40	104	216	7 8	1
			29	80	192		1
			24	61	152	10	1
			53	140	251	9	
Decode as 1: de ca 4 x (4)(5)	_		53	140	274	12	1
Par de salida máx. ⁽⁴⁾⁽⁵⁾	T _{2max}	Nm	53	131	274	15	1
			53	140	274	16	1
			53	140	274	20	1
			48	131	274	25	2
			53	140	274	32	
			48	131	274	40	
			29	80	192	64	1
			24	61	152	100	1

 $^{^{(1)}~}$ Relaciones de transmisión (i= $\rm n_1/\rm n_2$)

⁽²⁾ Número de etapas

⁽³⁾ Dimensionado específico para cada aplicación con NCP – www.neugart.com

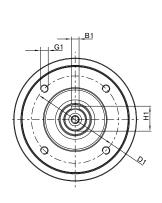
⁽⁴⁾ Valores para chaveta (código "A"): para carga fluctuante

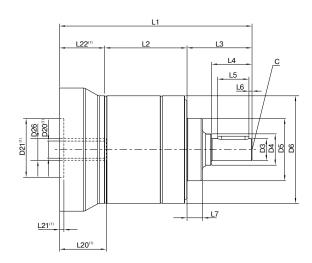
Datos técnicos

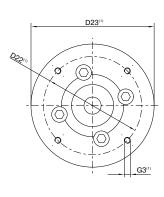
Pares de salida			HLAE070	HLAE090	HLAE110	i ⁽¹⁾	p ⁽²⁾
			56	170	230	3	3
			66	174	310	4	
			60	164	342	5	
			50	130	270	7	'
			36	100	240	8	
			30	76	190	10	10
			66	174	314	9	
Day do calido en arrayannio(3)	-	Nm	66	174	342	12	
Par de salida en emergencia ⁽³⁾	T _{2Stop}	1 _{2Stop} NIII	66	164	342	15	
			66	174	342	16	
				66	174	342	20
			60	164	342	25	2
			66	174	342	32	
			60	164	342	40	
			36	100	240	64	
			30	76	190	100	

Velocidades de entrada			HLAE070	HLAE090	HLAE110	i ⁽¹⁾	p ⁽²⁾									
			4000(5)	2700(5)	2000(5)	3	3									
			4000(5)	3000(5)	2000(5)	4										
			4000	3400(5)	2150(5)	5										
			4000	3500(5)	2600(5)	7] '									
Velocidad térmica media con T _{2N} y S1 ⁽⁴⁾			4000	3500	2800(5)	8										
			4000	3500	3000(5)	10										
	n _{1N}		4000	3500 ⁽⁵⁾	2400(5)	9										
		min-1	4000 3500(5) 24	2450(5)	12											
		'''''	4000	3500	2550(5)	15	5									
									l			4000	3500	2650(5)	16	
			4000	3500	2850(5)	20	2									
			4000	3500	2950(5)	25	-									
			4000	3500	3000(5)	32										
			4000	3500	3000	40										
			4000	3500	3000	64										
			4000	3500	3000	100										
Velocidad mecánica máx. de entrada(4)	n _{1Limit}	min ⁻¹	13000	7000	6500											

 $^{^{(1)}}$ Relaciones de transmisión (i= $n_{_1}/n_{_2}$)


⁽²⁾ Número de etapas


⁽³⁾ Valido 1000 veces


Valudo 1635 76363
 Valudo 1635 76363
 Dimensionado de velocidades específicas para cada aplicación con NCP – www.neugart.com
 Velocidad térmica media de entrada con 50% T_{2N} y S1

HLAE Hygienic Design Reductores planetarios

Dimensiones

La representación corresponde a un HLAE070 / de una etapa / Eje de salida con chavetero / 11 mm Sistema de amarre / Ajuste del motor – 1 pieza / B5 Tipo de brida motor

(1) Las medidas varían en función de la brida del motor/reductor. las geometrías de brida de entrada específicas de cada motor se pueden consultar de forma específica para cada motor en el tec data finder bajo www.neugart.com

Geometría ⁽²⁾			HLAE070	HLAE090	HLAE110	p ⁽³⁾	Code
Diámetro de amarres de salida	D1		56	75	90		
Diámetro del eje de salida	D3	h7	14	20	25		
Raiz del eje de salida	D4		20	25	35		
Diámetro de centraje de salida	D5	h7	40	58	65		
Diámetro de carcasa	D6		69	88	109		
Rosca de montaje x profundidad	G1	4x	M5x11	M6x12	M8x20		
	1.4		123,5	146	191	1	
Longitud total mín.	L1		135,5	166	219	2	
Longitud garage	L2		52,8	68,0	89,0	1	
Longitud carcasa	6		64,8	88,0	117,0	2	
Longitud del eje de salida	L3		41,7	50	66,5		
Profundidad del centraje de salida	L7		10	13	14		
Diámetro del eje motor j6/k6	D20		Las geometrías de brida de entrada específicas de cada motor se pueden consultar de forma específica para cada motor en el Tec Data Finder bajo www.neugart.com				
Diámetro del sistema de amarre de entrada	D26		11/14	19	24		
Eje de salida con chavetero (DIN 6885-1)			A 5x5x20	A 6x6x25	A 8x7x35		
Anchura de chaveta (DIN 6885-1)	B1		5	6	8		
Altura del eje con chaveta (DIN 6885-1)	H1		16	22,5	28		
Longitud del eje desde centraje	L4		26	32	45		Α
Longitud de la chaveta	L5		20	25	35		
Distancia desde el extremo del eje	L6	1	2	2,5	5		
Punto de centrado (DIN 332, forma DR)	С	1	M5x12,5	M6x16	M10x22		
Eje de salida liso							
Longitud del eje desde centraje	L4	•	26	32	45		В

⁽²⁾ Las medidas en mm

⁽³⁾ Número de etapas

100324442 Folleto del producto diseño higiénico del HLAE 12.2021 · ¡Sujeto a cambios!

¿Tiene alguna pregunta o necesita más información?

Estaremos encantados de asesorarle en todos los temas relacionados con la transmisión de fuerza.

Puede encontrar a su asesor en: www.neugart.com

Neugart GmbH

Keltenstraße 16 77971 Kippenheim Deutschland

Phone: +49 7825 847-0
Fax: +49 7825 847-2999
Email: sales@neugart.com
Web: www.neugart.com

Neugart USA Corp.

14325 South Lakes Drive Charlotte, NC 28273

USA

Phone: +1 980 299-9800
Fax: +1 980 299-9799
Email: sales@neugartusa.com
Web: www.neugart.com/en-us

Neugart Planetary Gearboxes (Shenyang) Co., Ltd.

No.152, 22nd road E&T Development Zone Shenyang, PC 110143 PR China

Phone: +86 24 2537-4959
Fax: +86 24 2537-2552
Email: sales@neugart.net.cn
Web: www.neugart.net.cn